Pre-class Warm-up
Consider the problem:
Find the entry in row 2 column 3 of the matrix product

$$
\left[\begin{array}{rr}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 2 & 1
\end{array}\right]
$$

Here's the question I shall ask you today: Find someone else who you can interview about this. Is that person able to do this calculation?

Answer:
a. Yes
b. No
2.1

How to understand functions of several variables

We learn:

- How to recognize n and m for a function $f: R \wedge n \rightarrow R \wedge m \quad D$
- Domain, range, target or codomain
- Describing a function by its graph
- Describing a function by its level sets, $=$ contour
- Describing a function by sections
- What some standard functions look like: paraboloids, saddle points.

What are n and m in the following functions $f: R \wedge n \rightarrow R \wedge m$?
What are the domain and range?
a. $f(s, t)=(1,2,3)+s(0,-1,1)+t(1,0,2)$

$$
n=2 \quad m=3
$$

b. $f(s)=(1,2,3)+s(0,-1,1)$

- $? \mathrm{n}=1$ and $\mathrm{m}=1$
- ? $\mathrm{n}=3$ and $\mathrm{m}=1$
- ? $\mathrm{n}=1$ and $\mathrm{m}=3$

The range of f is the line in \mathbb{R}^{3} passing through $(1,2,3)$ in direction

The graph of $f(x)=x^{\wedge} 2$.

The graph of $f(x, y)=x^{\wedge} 2+y^{\wedge} 2: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is the set of p int $((x, y), f(x, y))$ in \mathbb{R}^{3}
When $y=0$, we $\operatorname{get}\left(x, 0, x^{2}\right)$
When $x=0 \operatorname{weget}\left(0, y, y^{2}\right)$
A parabolic dash:

The level sets of $f(x, y)=x^{\wedge} 2+y^{\wedge 2}$ are
Sets in the domain, of points (x, y) where $f(x, y)=c$ is some constant.

Level sets

Sections of $f(x, y)=x^{\wedge} 2+y^{\wedge} 2$ are intersections of the graph with Vertical planes.

$$
f(x, y)=x y x^{2}-y^{2}
$$

Sections: parabola pointing up parabola pointing donn in y-z plane

Level sets

